
@nicolas_frankel

Zero downtime on 
Kubernetes

Nicolas Fränkel



@nicolas_frankel

Me, myself and I

✦Developer

✦Developer Advocate

✦We live in interesting times 
and I’m curious



@nicolas_frankel

Why zero downtime?

1. Business wants it
• Downtime has a cost

2. Users expect it
• When was the last time 

you saw Google Search 
display “Please come 
back later”?



@nicolas_frankel

Blue-Green deployment



@nicolas_frankel

Blue-Green deployment



@nicolas_frankel

Kubernetes rolling updates principle

1.0 1.01.02.0 2.0 2.0



@nicolas_frankel

Zero downtime’s issues relate to state

✦State in memory

• User sessions

• à Session replication

✦State in the database

• à That’s the hard spot!



@nicolas_frankel

Blue-Green deployment variant



@nicolas_frankel

Option 1: Keep the same database

✦The application needs to 
cope with two versions of 
the schema



@nicolas_frankel

Rolling upgrade issue with a database

1.0 1.01.02.0

1.02.0



@nicolas_frankel

1.02.0

More issues with rollback

1.0 1.02.0

1.02.0

2.0



@nicolas_frankel

An e-commerce use-case



@nicolas_frankel

New business requirement comes in!

✦Keep track of when a cart 
was last updated
• To send a reminder email 

after some time has 

passed



@nicolas_frankel

Target schema



@nicolas_frankel

Handling schema breaking changes

✦Split the breaking change 
into a series of changes 
compatible side-by-side

✦Plan for rollback (it 
happens!)



@nicolas_frankel

Steps’ decomposition

1. Create CART table
• App uses “old” data model
• Trigger inserts CART when the first CART_LINE is inserted

2. CART becomes the “source of truth”
• App uses the CART table
• Trigger updates CART_LINE with CUSTOMER_ID every time it’s 

inserted

3. Migration of untouched data

4. Cleanup



@nicolas_frankel

Issues of keeping the same database

✦Requires steps’ 
decomposition

✦Rollback a single step only

✦Needs planning across the 

organization (devs, DBAs, 
Ops)

✦You will need to migrate 
data anyway



@nicolas_frankel

Option 2: Embrace data migration

✦Have two different databases

✦Migration implemented by:
• Change-Data-Capture
• Data streaming

✦Developers are not impacted 
by Ops’ concerns

✦ It works with any deployment 
option e.g. canary release



@nicolas_frankel

Change-Data-Capture
“In databases, Change Data Capture is a 
set of software design patterns used to 
determine and track the data that has 
changed so that action can be taken using 
the changed data. 

CDC is an approach to data integration 
that is based on the identification, 
capture and delivery of the changes 
made to enterprise data sources.”

-- https://en.wikipedia.org/wiki/Change_data_capture



@nicolas_frankel



@nicolas_frankel



@nicolas_frankel



@nicolas_frankel



@nicolas_frankel



@nicolas_frankel



@nicolas_frankel

Continuous
Business 

Events
Pipeline

MQ

Kafka

IoT

Custom 
Connector

Enterprise 
Applications

Hazelcast

File Watcher

Socket

Database 
Events

Sources Sinks

MQ

Kafka

Alerts

Interactive 
Analytics

Enterprise 
Applications

Hazelcast

Databases

HDFS, S3, 
NoSQL

Files

Actionable
Context

The Hazelcast Platform

Transform Combine Stream ML Inference

Stream and Batch 
Processing Engine

Compute

In-Memory 
Data Store

Storage

Persistence

Microservice 
Servlet

Go Client

Analytics
Client

JDBC

Microservice 
Servlet

Java Client

Nearcache

SQL

Microservice 
Servlet

C#/.Net Client

Nearcache

SQL

Microservice 
Servlet

C++ Client

Nearcache

SQL

Microservice 
Servlet

JS Client

Nearcache

SQL

Microservice 
Servlet

Python Client

Nearcache

SQL

End User Applications

Systems of Record



@nicolas_frankel

Great for microservices, 
OEM and ops simplification

Great for scale-up or scale-out deployments with cluster lifecycle decoupled from app servers 

Clients available in Java, Node.js, C#, C++, Python, and Golang

Embedded Mode Client-Server Mode

Application

Java API

Application

Java API

Application

Java API

Hazelcast Deployment Options

Application

Client API

Application

Client API

Application

Client API

Application

Client API



@nicolas_frankel

Implementation details

✦Hazelcast for Session 

Replication

• Via Spring Session

✦Hazelcast for CDC

• With Debezium



@nicolas_frankel

Hazelcast Jet & Debezium



@nicolas_frankel

Talk is cheap, show me the code!



@nicolas_frankel

Takeaways

1. Zero-downtime is within 
your reach

2. Session replication

3. Change-Data-Capture + 

Data Streaming for the 
database



@nicolas_frankel

Thanks for your attention!

✦https://blog.frankel.ch/

✦@nicolas_frankel

✦https://bit.ly/zero-downtime

✦https://slack.hazelcast.com/

✦https://training.hazelcast.com/


