
@nicolas_frankel

Zero downtime on 
Kubernetes

Nicolas Fränkel



@nicolas_frankel

Me, myself and I

✦Developer

✦Developer Advocate

✦We live in interesting times 
and I’m curious
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Why zero downtime?

1. Business wants it
• Downtime has a cost

2. Users expect it
• When was the last time 

you saw Google Search 
display “Please come 
back later”?
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Blue-Green deployment
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Blue-Green deployment
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Kubernetes rolling updates principle

1.0 1.01.02.0 2.0 2.0
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Zero downtime’s issues relate to state

✦State in memory

• User sessions

• à Session replication

✦State in the database

• à That’s the hard spot!
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Blue-Green deployment variant
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Option 1: Keep the same database

✦The application needs to 
cope with two versions of 
the schema
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Rolling upgrade issue with a database

1.0 1.01.02.0

1.02.0
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1.02.0

More issues with rollback

1.0 1.02.0

1.02.0

2.0
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An e-commerce use-case
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New business requirement comes in!

✦Keep track of when a cart 
was last updated
• To send a reminder email 

after some time has 

passed
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Target schema
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Handling schema breaking changes

✦Split the breaking change 
into a series of changes 
compatible side-by-side

✦Plan for rollback (it 
happens!)
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Steps’ decomposition

1. Create CART table
• App uses “old” data model
• Trigger inserts CART when the first CART_LINE is inserted

2. CART becomes the “source of truth”
• App uses the CART table
• Trigger updates CART_LINE with CUSTOMER_ID every time it’s 

inserted

3. Migration of untouched data

4. Cleanup
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Issues of keeping the same database

✦Requires steps’ 
decomposition

✦Rollback a single step only

✦Needs planning across the 

organization (devs, DBAs, 
Ops)

✦You will need to migrate 
data anyway
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Option 2: Embrace data migration

✦Have two different databases

✦Migration implemented by:
• Change-Data-Capture
• Data streaming

✦Developers are not impacted 
by Ops’ concerns

✦ It works with any deployment 
option e.g. canary release
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Change-Data-Capture
“In databases, Change Data Capture is a 
set of software design patterns used to 
determine and track the data that has 
changed so that action can be taken using 
the changed data. 

CDC is an approach to data integration 
that is based on the identification, 
capture and delivery of the changes 
made to enterprise data sources.”

-- https://en.wikipedia.org/wiki/Change_data_capture
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Great for microservices, 
OEM and ops simplification

Great for scale-up or scale-out deployments with cluster lifecycle decoupled from app servers 

Clients available in Java, Node.js, C#, C++, Python, and Golang
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Implementation details

✦Hazelcast for Session 

Replication

• Via Spring Session

✦Hazelcast for CDC

• With Debezium
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Hazelcast Jet & Debezium
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Talk is cheap, show me the code!
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Takeaways

1. Zero-downtime is within 
your reach

2. Session replication

3. Change-Data-Capture + 

Data Streaming for the 
database
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Thanks for your attention!

✦https://blog.frankel.ch/

✦@nicolas_frankel

✦https://bit.ly/zero-downtime

✦https://slack.hazelcast.com/

✦https://training.hazelcast.com/


