

From Thorn...
....tail to Quarkus

Željko Trogrlić

Java Almost Banished from Cloud
● Kubernetes: moves and scales pods
● Serverless: start fast, do some work, stop
● Startup time and resource consumption are critical
● Java is optimized for long-running processes

– Slow startup
– HotSpot optimization

● Go and Node.js are welcome

Serverless = FaaS
There is an overlap between application server and

cloud framework (application management, high
availability, load balancing); it makes Java app
servers obsolete.

Cloud is heterogeneous and simpler to manage.
Java greatest advantages became weaknesses.

First try
● 2015.: Wildfly Swarm

– Take only some pieces of Wildfly
– Pack them into überjar

● 2016: Java MicroProfile
– IBM, Pajara, RedHat, Tomitribe

● 2018: Thotntail

Attempts to make Java cloud-friendly started half
decade ago.

How it really works
● Note: this page contains my subjective and

totally unscientific impression of the Thorntail
● Wildfly starts without some components
● Wait
● Wildfly deploys single application
● Wait
● Result: almost equaly slow and resource hungry

(and definitely worse than Spring)
● 2019-03-11, Quarkus replaces Thorntail

First Wildfly-based attempts did not bring enough to
the table regarding speed and reduced resource
usage. It was repackaging of existing product to
buy some time.

Where to go next?
● Some Microprofile library?
● There is always Spring
● That Quarkus thingy looks promissing

So the question was what else to use, especially if
projects already used Thorntail.

Fresh Start with Quarkus
● Trully modular
● Great dev mode
● Heavy realiance on GraalVM

Quarkus was a completely different take on cloud
Java.

It is based on SmallRye Microprofile components with
have reliance on GraalVM as a solution to cloud
problem.

GraalVM
● Native images
● Ahead of time compilation
● Close world assumption
● Supstrate VM
● No dynamic class loading, security managers,

reflection, finalizers,InvokeDynamic...

I emphasize GraalVM here as it heavy impact on
Quarkus architecture. Quarkus is MicroProfile
implementation for the GraalVM.

GraalVM is Java tool-set from Oracle. Main
components are GraalVM compiler and GraalVM
Native Image.

Compiler works with Hotspot while Native Image can
create native images that run with the help of
SupstrateVM. Generated code is heavily optimized
and stripped of all unused classes. Static code
results are already baked into image.

What is lost is dinamicity.ynamicity.

Graal giveth and Graal taketh away.

Key Areas
● Dependencies
● Running
● Configuration
● Database
● Messaging
● Building
● Testing

I worked on conversion of a real project for a
customer from Thorntail to Quarkus.

In the next pages I will describe typical problems that
I encountered.

Dependencies
● Replace all libaries with Quarkus ones

– Contain additional information for native execution

● Expose beans and entities from your
dependant projects
– beans.xml, Jandex index,

Quarkus defines many popular libraries as its
extensions. Extensions contain „runtime” and
„deployment” part, which makes libraries
compatible with GraalVM.

Quarkus team worked directly with many library
authors to make them compatible. Interesting
example is removal of GUI login from MariaDB
driver.

Our libraries had to be changed in some cases; for
example, beans and JPA entities must be declared
in order to be found during compilation.

Runnning
● No runnable class

– Run quarkus:dev goal
– Keep it running!

My first impulse was to define IntelliJ IDEA run
profiles for running and debugging, but that is not
how it works.

There is no main class.
Application must be started using quarkus:dev build

tool goal.
Once you start the goal, keep it running; Quarkus will

reload changes whenever you do HTTP request.
TIP: if application does not have HTTP endpoint,
just use heal.

Started application exposes debug port, to which IDE
can attach using second run profile. Latest versions
of IDEA simplifies that by providing the debug
button in the „Run” window.

Configuration
● Quarkus had different configuration file

– Includes persistence.xml stuff

● Warning: some parameters are baked-in!
– Check https://quarkus.io/guides/all-config

● Biggest issue was configuration from etcd

Quarkus configures everything through single
configuration file, either in properties or YAML
format.

As building application creates optimized version
where some stuff is resolved during the build
process, some properties are immutable, e.g.
HTTP port or using native SSL. Database drivers
are also static so be careful.

Biggest issue was using the configuration server,
which is described on the next page.

Configuration in Thorntail
● Configuration values from configuration server must be remapped to

framework specific ones
(e.g. JDBC URL = tenant1.db.host + tenant1.db.port...)

● Original Thorntail app:
– final Swarm swarm = new Swarm(false);
– // configure app
– swarm.start();
– swarm.deploy();

● Additional parameters fetched through custom API

Existing application remapped some configuration
values before starting the Thorntail. This is not
possible with Quarkus.

Configuration in Quarkus
● Quarkus cannot be started „manually”
● Proper way: develop custom ConfigSource

– ConfigSources are initializes before Quarkus
components

– Do not use dependency injection

● Lots of reimplementation!

Custom solution is replaced with standard
ConfigSource. Implementing your own with heavy
remapping could be tricky; be careful not to create
recursive calls.

Configuring Application
● Additional benefit of ConfigSource:

parameters fetched through standard API
– @ConfigProperty(

name=”myParamName”,
defaultValue=0

)
int myParam;

Database access
● For the most part, typical Hibernate
● No persistence.xml (avoid it!)

– Configuraton either with Quarkus parameters or not needed

● No need for hand-written repositiories
– PanacheRepository
– PanacheEntity

● Support for most open source and commercial databases
– Except Oracle

Although persistence.xml is supported, it can cause
problems in different situations so avoid it. Most of
the stuff is not needed anyway (entity declarations)
and the rest can be configured using Quarkus
properties.

Repositories are similar to Spring's, although class
rather than interface based and with simplified
query language rather than special method names.

Repositories are not needed if your entities
implement PanacheEntity, but I do not like static
methods on entities.

Driver extensions are created for most popular
databases, except Oracle due to legal reasons. It is
paradoxical because Oracle created GraalVM, but
not the compatible drivers for their own database.
With some tweaking, Oracle can be accessed in
VM (non-native) mode.

Messaging
● To message reactively or non-reactively?
● Reactive messaging hard to grasp for many
● Library was quite immature, lacking some typical use cases

– Optional outgoing messages
– Metadata access in annotated methods
– SerDe error handling

● Much better in Quarkus 1.9 / Smallrye 2.4
● Non-reactive API: Emitters and Publishers

Official messaging API is SmallRye implementation of
MicroProfile reactive messaging.

It is new library which is still heavily developed. There
was interface changes, bugs and missing features,
but now it provides simple, mostly stable and
powerful API.

It can be also used in a non-reactive way.

Testing
● @QuarkusTest is amazing!

– Well, now when it works
– Replaces Arquillian
– Gives you complete environment with CDI etc.

● Had issues with Mockito, but now its working

If your definition of unit is bigger than a single class,
@QuarkusTest will make your life easier.

With classic testing frameworks there is no support
for @Inject or entity managers. You could either
simulate everything with Mockito or try to configure
Arquillian, which is not an easy task.

With @QuarkusTest you can write tests with deep
structures of injected objects and access to in-
memory database in no time.

Quarkus Bugs

5

9

1

Open
Closed
My Bad

More careful among the readers might ask how
reliable is such new framework? Until spring of
2020., it was nightmare. Since then, situation
improved a lot. Of 14 bugs that I have reported, 8
were resolved and one was my mistake. Quarkus
team is very open for communication and
suggestions.

To Quarkus or not
● Most serious issues were fixed around 1.4
● Recent versions cover everyday needs well
● Production ready
● Joy to work with

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

