..@'.[lpén liberty .

Simple Tweaks
To Get the Most Out Of Your JVM

Jamie Lee Coleman (|

Software Developer/Advocate @ IBM | a V a
. . :

Twitter: @JamielLeeC ‘~——"')

Graal —

What we will be looking at... i

What is a JVM and why is it Picking the right runtime to run
Important? on your JVM

How the cloud has changed Tweaking your JVM

the JVM OpenJ9 Class Cache + Demo
HotSpot, Opend9 & OpenJ9 Idle Tuning

GraalVM Overview OpenJ9 JIT Server

CRIU
Recap

Why is the JVM important?

Well firstly without it we would have no Java!

What does the JVM do

A Java Virtual Machine (JVM) is responsible for taking your application
bite code and converting it to a machines language for execution.

Most other languages compile code for a specific system but in Java,
the compiler converts the code for a Java Virtual Machine that can be
used on any system hence the phrase “Write once, run anywhere”.

Why do people use JVM’s?

Cross Platform

Large Library Ecosystem
Great Garbage collector
Powerful Monitoring tools

Proven and Robust!

Open Libert

g - _f»—f" -

N

oyl >
i

JVM Architecture

Class Loader Subsystem

Method JVM PC Native
Language Method

Area Stack Registers Stacks

Runtime Data Area

I I

NEYYZS Native

Gy Method [Method

Execution

Engine

Interface Library's

ClassLoader Subsystem

Loading

Loads classes using 3 different class loaders named the Bootstrap, Extension
and Application ClassLoaders

Linking

Verify the generated bite code, prepare all static variables and assign default
values and resolves all symbolic memory references

Initialization

Assigns static variables with their original values and executes the static block

Runtime Data Area

Method Area:

Stores metadata, constant runtime pool and code for methods.
Heap:

Common memory shared between multiple threads that stores Object, Instance Variables and Arrays.
JVM Language Stacks:

Created when a thread is created and stores local variables

PC Registers:

Every thread has its own Register, and it stores the address of the Java virtual machine instruction which
IS currently executing.

Native Method Stack:

Holds Native method information. For every thread that is created so is a native method stack.

Execution Engine a

Execution Engine:
Reads bytecode and executes it using the Interpreter and JIT Compiler

Native method interface (JNI):

Interacts with the Native Method Libraries to provide the required libraries
for the execution engine.

Native Method Library’s
A collection of Native Libraries.

How the cloud has changed
the JVM

$3$3$ 9

Cloud computing
energy = money

Money changes everything

With a measurable and direct relationship between
SE€YP and CPU/RAM, disk etc the financial success
or failure of a project is even easier to see

And that means...

Even more focus on value for money and as a
result focus on energy.

What the Cloud offers

Demand

time

What the Cloud offers

time

What the Cloud offers

time

Microservices and the JVM

Many metrics must be balanced for Java Performance

* Wide variety of use cases means many metrics must be balanced
* Different goals = different design decisions

* No single “right” answer

* Must keep a balance =2 make sensible trade-offs

start-up time

* Key performance metrics tracked CPU footprint
* start-up time
* ramp-up time
* memory footprint
* response time
 CPU/Throughput

response time ramp-up

Optimizing for cloud requires a different balance across these performance metrics

Java ME Inside!

Open Libert
Java ME o

Fast startup

- Everybody wants their games to start
quickly

Java ME vs the JVM in the Cloud .

JAVA ME REQUIREMENTS JVM IN THE CLOUD REQUIREMENTS
Small footprint Small footprint
- On disk and runtime. - Improves density for providers
- Very limited RAM, usually more ROM - Improves cost for applications
Fast startup Fast startup
- Everybody wants their games to start - Faster scaling for increased demand
quickly
Quick / immediate rampup Quick / iImmediate rampup
- Game shouldn’t play better the longer - GB/hr is key, if you run for less time you pay

you play less money

Why should developers care
about optimisation of our
Applications?

It does not save that much money!

21

Why should developers care?

There 1s over 500,000 data centres worldwide

The area of land they consume is around the same as 6,000 football
pitches

UK energy consumption x 1.5 == global data centre energy
consumption (2019).

& Infrastructure Savings
M Network Savings
M Storage Savings

7 Server Savings

<€ 120
3

8

3

& o
c O O

g
E
:
S
:
:
&
g

N
o

0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

The Different JVMs Available

Azul

Codename One (Mobile)
Eclipse OpenJ9

GraalVM

HotSpot

JamVM (10T Devices)
JikesRVM (Research)
leJOS (Robotics for Lego)
Maxine

Apache Harmony
JOP

There is a JVM for everything

Juice

Jupiter

Kaffe

Mika VM (Embedded Devices)
NanoVN (Asuro Robot)
SableVM

SquawkVM
SuperWaba

TakaTuka

TinVM

WonkaVM

Most popular JVM’s

Oracle JDK
OpendDK (via Adopt OpenJDK)
OpenJDK (via Oracle)

OpendDK (via Amazon Coretto)

Azul

GraalVM

Eclipse OpenJ9 (via Adopt OpenJDK)

HotSpot, OpenJ9 and GraalVM

Overview

Overview of HotSpot

Formally known as “Java HotSpot Performance Engine”

Original release: 27" April 1999 O p e n

HotSpot became the default Sun (Now Oracal) JVM in Java 1.3

On 13 November 2006, the HotSpot JVM and the Java Development Kit (JDK)
became Open Source paving the way for OpenJDK and many other JVM
Implementations.

“HotSpot continually analyzes the program's performance for hot spots which are
executed often or repeatedly. These are then targeted for optimizing, leading to
high-performance execution with a minimum of overhead for less performance-
critical code™ - Wikipedia

https://en.wikipedia.org/wiki/Java_Development_Kit
https://en.wikipedia.org/wiki/Hot_spot_(computer_programming)
https://en.wikipedia.org/wiki/Optimization_(computer_science)

Overview of OpenJ9

Designed from the start to span all the
operating systems needed by IBM products

This JVM can go from small to large

Can handle constrained environments or
memory rich ones

Is used by the largest enterprises on the
planet

Overview of OpenJ9

51% faster startup time 50% smaller footprint after

startup

Faster ramp-up time in the 33% smaller footprint during

cloud load

1.0 2001

—
. s

w &
@

o o

® N

= »

i

S [

o (’)

T s .

o [-

o ®

o 2

= 7

= o

(]

N

‘é’ »n
E e
Py (1]
a w
o

] c
© @
- pel
» @
© o
e o
. =
=

P ©
®
o

Time (s)

HotSpot OpenJ9 HotSpot

By using shared classes cache and) Opend9 reaches peak throughput Consistent with the footprint results
. After startup, the OpendJ9 footprint el .
AOT technology, OpenJ9 starts in ,) . much faster than HotSpot making it after startup, the OpendJ9 footprint
s is half the size of HotSpot, which . : . .
roughly half the time it takes especially suitable for running remains much smaller than HotSpot

makes it ideal for cloud workloads.
HotSpot. short-lived applications. when load is applied.

Overview of GraalVM Josilie

Original Release: May 2019 v19.0

Based on HotSpot OpenJDK with routes from the Maxine Virtual machine
developed by Sun (Oracal) and the University of Manchester UK.

Why is it different to other JVM’s?
It has a new JIT compiler for Java, GraalVM Compiler

It allows the ahead-of-time compilation of Java applications with the GraalVM Native Image

Truffle Language Implementation framework and the GraalVM SDK to enable additional
programming language runtimes

LLVM and JavaScript Runtime

Graal

GraalVM Project Goals:

To improve the performance of Java virtual machine-based languages to
match the performance of native languages.

To reduce the startup time of JVM-based applications by compiling them
ahead-of-time with GraalVM Native Image technology.

To enable GraalVM integration into the Oracle Database, OpenJDK,
Node.js, Android/iOS, and to support similar custom embeddings.

To allow freeform mixing of code from any programming language in a
single program, billed as "polyglot applications".

To include an easily extended set of "polyglot programming tools".

Graal

Picking the right Runtime

Open Source Runtimes from IBM & RedHat

37

Open Liberty

An IBM Open Source Project

A lightweight open framework for building fast and
efficient cloud-native Java microservices.

Build cloud-native apps and microservices while running only
what you need. Open Liberty™ is the most flexible server runtime
available to Java™ developers in this solar system.

Get Open Liberty

Liberty

Developer friendly Cloud Ready
Just enough application server Container optimized
Fast inner loop with dev mode Designed for dev/ops
Support for industry standard Small disk footprint
dev tools Efficient memory usage
Jakarta EE, Java EE, Fast Startup

MicroProfile, Spring APIs

High throughput
Zero Migration : iy

Self-Tuned Thread Pool

Just Enough Application Server -

* You control which features are loaded into each server instance

JSp-2.3 jsf-2.3

serviet-4.0

http-2.0 = appmgr

APl Support

First shipped in WAS 8.5 In 2012
. Servlet + JSP + JPA MICROPROFILE.

Web Profile 6 in 2014

Java EE 7 in 2016 — first commercial
product to certify

Java EE 8 in 2018 — first to certify
Jakarta EE 8 in 2019 — first to certify

=) I
Eclipse MicroProfile — first to deliver — dVd

1.0-1.4,2.0-2.1, 3.0

] QUARKUS

Supersonic Subatomic Java

A Kubernetes Native Java stack tailored for OpenJDK HotSpot
and GraalVM, crafted from the best of breed Java libraries and
standards.

Quarkus .

» Unified Configuration

- Zero config, live reload

- Streamlined code for the 80% common usages
- Native Execution

« Support for many libraries such as MicroProfile

ye

),

Quarkus

Memory (RSS) in Megabytes*

REST HENNERE

12 MB

BOOT + First Response Time

arep '10.016 Seconds

REST aepip) _ 0.943 Seconds

NI e olpguuuunuoInnun (5 L R RO N R RN RN AR) R R ouuuumnoInnn!

bt |0.042 Seconds

Other Runtimes

o°
@ ®
¢ JBoss
O
.. by Red Hat

payara x

Tweaking the JVM

Making Your Java Code Perform

46

Making the most out of any JVM

Writing efficient code

Use the right JVM for your needs

Pick a runtime that is right for your application
Use Profiling to get the most out of your JVM

Tweak your JVM depending on your needs in development and
production

1. Writing efficient code

Use primitives where possible
Use a StingBuilder rather than an StringBuffer
Avoid using an Iterator

Avoid using Biglinteger and BigDecimal

2. Use the right JVM for your needs

Latest release

1. Choose a Version 2.Choose a JVM Heipuech
pentOK B (LTS) HulSpot
Cpen JOK O L ‘ eny

QpenlDX 10

& OpendDX ¥ (LTS)
OpanJOX 42
CpentDX 13
penOX 14
OpandOK 15

OpendDK 16 (Latest

K-11 0 1049 _opery-0 240

K11 0 10+8_opery-0 24 0

3. Pick a runtime that is right for your

application A e

Larger

WAS

%2
S
Q
Q
c
o
<

Smaller

Monolith Macroservice Microservice Functions

Architectural style

4. Profiling

Java Profilers are really useful tools that enable you to monitor Java
bytecode constructs and operations inside the JVM. This includes
things such as:

Garbage Collections
Object Creation
Method Executions
lterative Executions

Thread Executions

4. Profiling Cont

Most Popular Java Profilers:
JProfiler
YourKit
Java VisualVM
NetBeans Profiler

Oracle Java Mission Control (Included in Oracle JDK)

5. Tweak your JVM e

Tune your Garbage Collector (GC)
Use the AOT Compiler

Enable Class Data Sharing (HotSpot & OpenJ9)
Enable Idle Tuning
Use a JIT Server

Start with min Heap Size

OpenJ9 Class Data Sharing

For Super Fast Start-up

What is class sharing?

A shared classes cache is an area of shared memory of a fixed size that
persists beyond the lifetime of the JVM or a system reboot unless a non-
persistent shared cache is used. Any number of shared caches can exist on
a system, and all are subject to operating system settings and restrictions.

A shared cache cannot grow in size. When it becomes full, JVMs can still
load classes from it but can no longer store any data into it. You can create a
large, shared classes cache up front, while setting a soft maximum limit on
how much shared cache space can be used. You can increase this limit
when you want to store more data into the shared cache without shutting
down the JVMs that are connected to it.

How does class sharing work?

When a JVM loads a class, it first looks in the class loader cache to see if the class it needs is already present. If
yes, it returns the class from the class loader cache. Otherwise, it loads the class from the filesystem and writes
it into the cache as part of the defineClass() call. Therefore, a non-shared JVM has the following class loader
lookup order:

Classloader cache

Parent

Filesystem
In contrast, a JVM running with the class sharing feature uses the following order:

Classloader cache

Parent

Shared classes cache

Filesystem

How to Enabling class sharing e

To enable class sharing, add -Xshareclasses[:.name=<cachename>] to
an existing Java command line.

You can specify the shared cache size using the parameter -
Xscmx<size>[k|m|g. This parameter only applies if a new shared cache
IS created.

12

10

IN

N

Startup time comparison (using HotSpot JVM)

PingPerf application startup time with HotSpot
(in seconds)

Open Liberty 20.0.0.4 TomEE 8.0.0-M3-microprofile Tomcat 9.0.22 + OpenWebBeans Wildfly 17.0.1 javaee JBoss 7.2 Glassfish web 5 Payara web 5.192
2.0.11(CDI) + CXF 3.3.2 (jaxrs)

A~ ; _;'(jf : ﬁ

w

N

[N

o

Startup time comparison (using OpenJ9 JVM) 2

PingPerf application startup time with OpenJ9 Shared Classes Cache (in seconds)

Open Liberty 20.0.0.4 TomEE 8.0.0-M3-microprofile ~ Tomcat 9.0.22 + OpenWebBeans Wildfly 17.0.1 javaee JBoss 7.2 Glassfish web 5 Payara web 5.192
2.0.11(CDI) + CXF 3.3.2 (jaxrs)

Open Liberty and OpenJ9 shared classes
cache in Docker

Open Li

? . >
-~ ‘ —
S ~

AcmeAir MS Startup time in Docker (in seconds)

berty

60

Open Liberty with OpenJ9: the road to Oneyen iverts
second startup time

2018-2020 Progression of OpenlLiberty+Openl)9 startup time (seconds)

2.5

Open]9 : Improved Cached feature metadata when no change to server.xml Changed bundle activation to start in parallel
— —
Better AOT code RAS processing Optimized loading of CXF JSON/JSONB provider RAS annotation processing at build time
JMX MBeanServer init Cached annotation information for built-in JAX-RS Providers ~ Cached plugin xml and OSGi metadata
2
OpenJ9 : GC hints in shared classes cache Reduced class loading during startup
Reduced logging overhead
OpenJ9 : More AOT code in shared classes cache
15
OpenJ9 : Optimize class verification overhead
1
0.5 I
0
December '18 March '19 April '19 July '19 August '19 September '19 April '20

61

Opend9 Class Cache

Demo

Interactive Demo

If you want to run through the demo’s at the same time please go to:

https://openliberty.io/guides/getting-started.html

https://openliberty.io/guides/getting-started.html

OpendJ9 Idle Tuning

Openlg JVM judiciously uses computing resources

Computing resources ==

Cloud it’s about sharing; do not be greedy in using all resources
* Openl9 is conservative with heap growth
* Openl9 frees memory used transiently during JIT compilation

Steady state memory footprint in AcmeAir
800

[]
o O
o O

For large containers
Openl9 uses less than
half the memory

[
o
o

Resident set size (MB)
w S
o o
o o

N
o
o

=
o
o

1GB

2GB 4GB
Container limit

o

B OpenlJ9 M Hotspot

Free Resources when Applications are

ldling ==

Openlg frees resources when applications are idling

anthesisgroup.com: “Some 30 percent of VMs are zombies” 1. Detectidle state
https://anthesisgroup.com/wp-content/uploads/2017/03/Comatsoe-Servers-Redux-2017.pdf
2. Trigger GC
250
3. Compact Java heap
200 - 4. Send OS reclamation hint
g 150, \\ / -
> Process memory reduced during idle
£ | | Process Memory
< 100- ——— Java Heap
50 | | | | I || -XX:+IldleTuningGcOnldle
(default setting in container)
0 active "dle"l active | !dlq " active | idle
— rqg« >l >l
.me

Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

https://github.com/blueperf/acmeair
https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

OpenJ9 JIT Server

Open Liberty

==

JIT server

—
e

68

JITServer Performance

JIT server performance : Open Liberty Daytradery throughput

1400

I
N
o
o

1000
800
600
400
200

Throughput (pages/sec)

--cpus=1, -m=300m

1400

=
N
o
o

1000
800
600
400

Throughput (pages/sec)

200

100 200 300 400 500 600
Time (sec)

—JITServer ——Openl)9

e

--cpus=1, -m=256m

100 200 300 400
Time (sec)

—JITServer ——O0Openl9

500

600

1400

=
N
o
o

1000
800
600
400

Throughput (pages/sec)

200

--cpus=1, -m=200m

100 200 300 400
Time (sec)

—JITServer ——Openl)9

Throughput benefits grow in constrained environments

500

600

How to enable a JIT Server e

Launch Opend9 in client mode so that the VM sends requests to the
JITServer using the following command:

“XX:+IsedITServer”

Then run the following command to start a JITServer process that
listens for incoming compilation requests:

“litserver”

Future tech to the rescue?

Faster start-up for Java applications with CRIU snapshots

71

CRIU o

Checkpoint/Restore in Userspace (CRIU) is a potential solution for
reducing start-up time in Java applications.

CRIU is a feature on the Linux operating system that enables a
shapshot (checkpoint) to be taken of a running application

The application instance can then be restarted from the point at which
the snapshot was taken.

CRIU

Time (secs)

4.5

3.2

2.5

1.5

0.5

Time to first response in three different applications
with and without CRIU enabled

m Without CRIU
B With CRIU

pingperf acmeair daytrader?
Application

5-10 times improvement in start-up time, with the greater
benefits of CRIU coming from more complex, slower to
start, applications.

Challenges with CRIU e

» Lack of encryption on CRIU snhapshots

* No Address Space Layout Randomization (ASLR)
* Predictable random number generators

* Running as non-root user

* No API to specify when the snapshot should be taken

Recap

What if anything have you learned today?

77

How do you get the most out of

your JVM? /
Write efficient code E—'{) Java

Use the right JVM for your needs
Pick a runtime that is right for your application

Use Profiling Open

&
Tweaking your JVM

Less Money & Energy!

Links and Materials

JVM’s

AdoptOpen)DK: https://adoptopenjdk.net/
Openl9: https://www.eclipse.org/openj9/
HotSpot JDK: https://openjdk.java.net/groups/hotspot/

Oracle JDK: https://www.oracle.com/uk/java/technologies/javase-

downloads.html
GraalVM: https://www.graalvm.org/

Azul (Zulu): https://www.azul.com/downloads/zulu-community/

Amazon JDK: https://aws.amazon.com/corretto/

Runtimes

* Open Liberty Site: https://openliberty.io/

* Open Liberty Guides: https://openliberty.io/guides
* Quarkus Site: https://quarkus.io/

Other Useful Links

Jakarta EE Homepage: https://jakarta.ee/

Openl9 JIT Server Doc:
https://www.eclipse.org/openj9/docs/jitserver/

Openl9 Class Data Sharing Doc:
https://www.eclipse.org/openj9/docs/shrc/

Openl9 Idle Tuning Doc:
https://www.eclipse.org/openj9/docs/xxidletuninggconidle/

........................

®) QUARKUS

«| OUARKUS

Open Liberty SSe
A lightwright agen fravewark far sutlding (nal vl
eMovat dosd sative brea idireservices

Unleash the power of Java

https://www.eclipse.org/openj9/docs/xxidletuninggconidle/

References to research for this talk o

https://snyk.io/blog/36-of-developers-switched-from-oracle-jdk-to-an-alternate-openjdk-
distribution-over-the-last-year/

https://en.wikipedia.org/wiki/List of Java virtual machines

https://www.guru99.com/java-virtual-machine-
Ivm.html#:~:text=Java%20Virtual%20Machine%20(JVM)%20is,code%20for%20a%20pa
rticular%20system.

https://dzone.com/articles/ijvm-architecture-explained

https://www.guora.com/Whats-the-attraction-of-the-JVM-platform

https://stackify.com/java-performance-tuning/

https://en.wikipedia.org/wiki/Comparison of Java virtual machines

https://www.baeldung.com/java-profilers

https://snyk.io/blog/36-of-developers-switched-from-oracle-jdk-to-an-alternate-openjdk-distribution-over-the-last-year/
https://en.wikipedia.org/wiki/List_of_Java_virtual_machines
https://www.guru99.com/java-virtual-machine-jvm.html:~:text=Java%20Virtual%20Machine%20(JVM)%20is,code%20for%20a%20particular%20system
https://dzone.com/articles/jvm-architecture-explained
https://www.quora.com/Whats-the-attraction-of-the-JVM-platform
https://stackify.com/java-performance-tuning/
https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines
https://www.baeldung.com/java-profilers

Thank You

Jamie Lee Coleman
Software Developer/Advocate @ IBM

@Jamie_Lee_C

31

mailto:jlcoleman@uk.ibm.com

