
1

Simple Tweaks

To Get the Most Out Of Your JVM

Jamie Lee Coleman
Software Developer/Advocate @ IBM
Twitter: @JamieLeeC

2

What we will be looking at…

• What is a JVM and why is it

important?

• How the cloud has changed

the JVM

• HotSpot, OpenJ9 &

GraalVM Overview

• Picking the right runtime to run

on your JVM

• Tweaking your JVM

• OpenJ9 Class Cache + Demo

• OpenJ9 Idle Tuning

• OpenJ9 JIT Server

• CRIU

• Recap

33

Why is the JVM important?
Well firstly without it we would have no Java!

4

What does the JVM do

A Java Virtual Machine (JVM) is responsible for taking your application

bite code and converting it to a machines language for execution.

Most other languages compile code for a specific system but in Java,

the compiler converts the code for a Java Virtual Machine that can be

used on any system hence the phrase “Write once, run anywhere”.

5

Why do people use JVM’s?

• Cross Platform

• Large Library Ecosystem

• Great Garbage collector

• Powerful Monitoring tools

• Proven and Robust!

7

JVM Architecture

Class Loader Subsystem

Runtime Data Area

Method
Area

Heap
JVM

Language
Stack

PC
Registers

Native
Method
Stacks

Execution
Engine

Native
Method
Interface

Native
Method
Library's

8

ClassLoader Subsystem

Loading

• Loads classes using 3 different class loaders named the Bootstrap, Extension
and Application ClassLoaders

Linking

• Verify the generated bite code, prepare all static variables and assign default
values and resolves all symbolic memory references

Initialization

• Assigns static variables with their original values and executes the static block

9

Runtime Data Area

Method Area:

• Stores metadata, constant runtime pool and code for methods.

Heap:

• Common memory shared between multiple threads that stores Object, Instance Variables and Arrays.

JVM Language Stacks:

• Created when a thread is created and stores local variables

PC Registers:

• Every thread has its own Register, and it stores the address of the Java virtual machine instruction which

is currently executing.

Native Method Stack:

• Holds Native method information. For every thread that is created so is a native method stack.

10

Execution Engine

Execution Engine:

• Reads bytecode and executes it using the Interpreter and JIT Compiler

Native method interface (JNI):

• Interacts with the Native Method Libraries to provide the required libraries
for the execution engine.

Native Method Library’s

• A collection of Native Libraries.

1111

How the cloud has changed

the JVM
$ $ $ $ $

12

Cloud computing
energy = money

Money changes everything

With a measurable and direct relationship between
$£€¥₽ and CPU/RAM, disk etc the financial success
or failure of a project is even easier to see

And that means…

Even more focus on value for money and as a
result focus on energy.

13

Demand

One big server running all the time?

time

What the Cloud offers

14

Demand

One big server running all the time?

time

What the Cloud offers

15

Demand

time

One big server running all the time?

What the Cloud offers

16

Microservices and the JVM

17

Many metrics must be balanced for Java Performance

• Wide variety of use cases means many metrics must be balanced

• Different goals  different design decisions

• No single “right” answer

• Must keep a balance make sensible trade-offs

• Key performance metrics tracked

• start-up time
• ramp-up time
• memory footprint
• response time
• CPU/Throughput

Optimizing for cloud requires a different balance across these performance metrics

start-up time

footprint

ramp-upresponse time

CPU

18

Java ME Inside!

19

JAVA ME REQUIREMENTS

Small footprint
- On disk and runtime.

- Very limited RAM, usually more ROM

Fast startup
- Everybody wants their games to start

quickly

Quick / immediate rampup
- Game shouldn’t play better the longer

you play

Java ME

20

JAVA ME REQUIREMENTS JVM IN THE CLOUD REQUIREMENTS

Small footprint
- On disk and runtime.

- Very limited RAM, usually more ROM

Small footprint
- Improves density for providers

- Improves cost for applications

Fast startup
- Everybody wants their games to start

quickly

Fast startup
- Faster scaling for increased demand

Quick / immediate rampup
- Game shouldn’t play better the longer

you play

Quick / immediate rampup
- GB/hr is key, if you run for less time you pay

less money

Java ME vs the JVM in the Cloud

2121

Why should developers care

about optimisation of our

Applications?
It does not save that much money!

22

Why should developers care?

There is over 500,000 data centres worldwide

The area of land they consume is around the same as 6,000 football

pitches

UK energy consumption x 1.5 == global data centre energy

consumption (2019).

23

Luckily Hardware efficiency is helping

2424

The Different JVMs Available

25

There is a JVM for everything

Azul

Codename One (Mobile)

Eclipse OpenJ9

GraalVM

HotSpot

JamVM (IOT Devices)

JikesRVM (Research)

leJOS (Robotics for Lego)

Maxine

Apache Harmony

JOP

Juice

Jupiter

Kaffe

Mika VM (Embedded Devices)

NanoVN (Asuro Robot)

SableVM

SquawkVM

SuperWaba

TakaTuka

TinVM

WonkaVM

26

Most popular JVM’s

• Oracle JDK

• OpenJDK (via Adopt OpenJDK)

• OpenJDK (via Oracle)

• OpenJDK (via Amazon Coretto)

• Azul

• GraalVM

• Eclipse OpenJ9 (via Adopt OpenJDK)

3131

HotSpot, OpenJ9 and GraalVM

Overview

32

Overview of HotSpot

Formally known as “Java HotSpot Performance Engine”

Original release: 27th April 1999

HotSpot became the default Sun (Now Oracal) JVM in Java 1.3

On 13 November 2006, the HotSpot JVM and the Java Development Kit (JDK)
became Open Source paving the way for OpenJDK and many other JVM
implementations.

“HotSpot continually analyzes the program's performance for hot spots which are
executed often or repeatedly. These are then targeted for optimizing, leading to
high-performance execution with a minimum of overhead for less performance-
critical code” - Wikipedia

https://en.wikipedia.org/wiki/Java_Development_Kit
https://en.wikipedia.org/wiki/Hot_spot_(computer_programming)
https://en.wikipedia.org/wiki/Optimization_(computer_science)

33

Overview of OpenJ9

Designed from the start to span all the
operating systems needed by IBM products

This JVM can go from small to large

Can handle constrained environments or
memory rich ones

Is used by the largest enterprises on the
planet

34

Overview of OpenJ9

35

Overview of GraalVM

Original Release: May 2019 v19.0

Based on HotSpot OpenJDK with routes from the Maxine Virtual machine

developed by Sun (Oracal) and the University of Manchester UK.

Why is it different to other JVM’s?

• It has a new JIT compiler for Java, GraalVM Compiler

• It allows the ahead-of-time compilation of Java applications with the GraalVM Native Image

• Truffle Language Implementation framework and the GraalVM SDK to enable additional

programming language runtimes

• LLVM and JavaScript Runtime

36

GraalVM Project Goals:

• To improve the performance of Java virtual machine-based languages to

match the performance of native languages.

• To reduce the startup time of JVM-based applications by compiling them

ahead-of-time with GraalVM Native Image technology.

• To enable GraalVM integration into the Oracle Database, OpenJDK,

Node.js, Android/iOS, and to support similar custom embeddings.

• To allow freeform mixing of code from any programming language in a

single program, billed as "polyglot applications".

• To include an easily extended set of "polyglot programming tools".

3737

Picking the right Runtime
Open Source Runtimes from IBM & RedHat

3838

39

Liberty

• Developer friendly

• Just enough application server

• Fast inner loop with dev mode

• Support for industry standard
dev tools

• Jakarta EE, Java EE,
MicroProfile, Spring APIs

• Zero Migration

• Cloud Ready

• Container optimized

• Designed for dev/ops

• Small disk footprint

• Efficient memory usage

• Fast startup

• High throughput

• Self-Tuned Thread Pool

40

<feature>servlet-4.0</feature><feature>jsf-2.3</feature>

Just Enough Application Server

• You control which features are loaded into each server instance

Kernel

servlet-4.0

http-2.0 appmgr

jsp-2.3 jsf-2.3
Java EE/Jakarta EE

41

API Support

• First shipped in WAS 8.5 in 2012

o Servlet + JSP + JPA

• Web Profile 6 in 2014

• Java EE 7 in 2016 – first commercial

product to certify

• Java EE 8 in 2018 – first to certify

• Jakarta EE 8 in 2019 – first to certify

• Eclipse MicroProfile – first to deliver

1.0-1.4, 2.0-2.1, 3.0

42

43

Quarkus

• Unified Configuration

• Zero config, live reload

• Streamlined code for the 80% common usages

• Native Execution

• Support for many libraries such as MicroProfile

44

Quarkus

45

Other Runtimes

4646

Tweaking the JVM
Making Your Java Code Perform

47

Making the most out of any JVM

1. Writing efficient code

2. Use the right JVM for your needs

3. Pick a runtime that is right for your application

4. Use Profiling to get the most out of your JVM

5. Tweak your JVM depending on your needs in development and

production

48

1. Writing efficient code

• Use primitives where possible

• Use a StingBuilder rather than an StringBuffer

• Avoid using an Iterator

• Avoid using BigInteger and BigDecimal

49

2. Use the right JVM for your needs

50

3. Pick a runtime that is right for your

application

Architectural style

FunctionsMonolith Microservice

A
P

I
n

e
e

d
s

Smaller

Larger

Macroservice

Open Liberty

WAS

Quarkus

51

4. Profiling

Java Profilers are really useful tools that enable you to monitor Java

bytecode constructs and operations inside the JVM. This includes

things such as:

• Garbage Collections

• Object Creation

• Method Executions

• Iterative Executions

• Thread Executions

52

4. Profiling Cont

Most Popular Java Profilers:

• JProfiler

• YourKit

• Java VisualVM

• NetBeans Profiler

• Oracle Java Mission Control (Included in Oracle JDK)

53

5. Tweak your JVM

• Tune your Garbage Collector (GC)

• Use the AOT Compiler

• Enable Class Data Sharing (HotSpot & OpenJ9)

• Enable Idle Tuning

• Use a JIT Server

• Start with min Heap Size

5454

OpenJ9 Class Data Sharing
For Super Fast Start-up

55

• A shared classes cache is an area of shared memory of a fixed size that

persists beyond the lifetime of the JVM or a system reboot unless a non-

persistent shared cache is used. Any number of shared caches can exist on
a system, and all are subject to operating system settings and restrictions.

• A shared cache cannot grow in size. When it becomes full, JVMs can still

load classes from it but can no longer store any data into it. You can create a

large, shared classes cache up front, while setting a soft maximum limit on

how much shared cache space can be used. You can increase this limit

when you want to store more data into the shared cache without shutting

down the JVMs that are connected to it.

What is class sharing?

56

When a JVM loads a class, it first looks in the class loader cache to see if the class it needs is already present. If
yes, it returns the class from the class loader cache. Otherwise, it loads the class from the filesystem and writes
it into the cache as part of the defineClass() call. Therefore, a non-shared JVM has the following class loader
lookup order:

• Classloader cache

• Parent

• Filesystem

In contrast, a JVM running with the class sharing feature uses the following order:

• Classloader cache

• Parent

• Shared classes cache

• Filesystem

How does class sharing work?

57

To enable class sharing, add -Xshareclasses[:name=<cachename>] to

an existing Java command line.

You can specify the shared cache size using the parameter -

Xscmx<size>[k|m|g. This parameter only applies if a new shared cache

is created.

How to Enabling class sharing

58

0

2

4

6

8

10

12

Open Liberty 20.0.0.4 TomEE 8.0.0-M3-microprofile Tomcat 9.0.22 + OpenWebBeans
2.0.11(CDI) + CXF 3.3.2 (jaxrs)

Wildfly 17.0.1 javaee JBoss 7.2 Glassfish web 5 Payara web 5.192

PingPerf application startup time with HotSpot
(in seconds)

Startup time comparison (using HotSpot JVM)

59

0

1

2

3

4

5

6

7

8

Open Liberty 20.0.0.4 TomEE 8.0.0-M3-microprofile Tomcat 9.0.22 + OpenWebBeans
2.0.11(CDI) + CXF 3.3.2 (jaxrs)

Wildfly 17.0.1 javaee JBoss 7.2 Glassfish web 5 Payara web 5.192

PingPerf application startup time with OpenJ9 Shared Classes Cache (in seconds)

Startup time comparison (using OpenJ9 JVM)

60

Open Liberty and OpenJ9 shared classes

cache in Docker

0

2

4

6

8

Open Liberty Docker image without shared classes cache Open Liberty Docker image with shared classes cache

AcmeAir MS Startup time in Docker (in seconds)

61

0

0.5

1

1.5

2

2.5

December '18 March '19 April '19 July '19 August '19 September '19 April '20

2018-2020 Progression of OpenLiberty+OpenJ9 startup time (seconds)

Open Liberty with OpenJ9: the road to one

second startup time

OpenJ9 : Improved Cached feature metadata when no change to server.xml Changed bundle activation to start in parallel

Better AOT code RAS processing Optimized loading of CXF JSON/JSONB provider RAS annotation processing at build time

JMX MBeanServer init Cached annotation information for built-in JAX-RS Providers Cached plugin xml and OSGi metadata

OpenJ9 : GC hints in shared classes cache Reduced class loading during startup

Reduced logging overhead

OpenJ9 : More AOT code in shared classes cache

OpenJ9 : Optimize class verification overhead

6262

OpenJ9 Class Cache
Demo

63

Interactive Demo

If you want to run through the demo’s at the same time please go to:

https://openliberty.io/guides/getting-started.html

https://openliberty.io/guides/getting-started.html

6464

OpenJ9 Idle Tuning

65

OpenJ9 JVM judiciously uses computing resources

Computing resources ==

Cloud it’s about sharing; do not be greedy in using all resources
• OpenJ9 is conservative with heap growth

• OpenJ9 frees memory used transiently during JIT compilation

0

100

200

300

400

500

600

700

800

1GB 2GB 4GB

R
es

id
en

t
se

t
si

ze
 (

M
B

)

Container limit

Steady state memory footprint in AcmeAir

OpenJ9 Hotspot

For large containers
OpenJ9 uses less than
half the memory

66

Free Resources when Applications are

Idling

-XX:+IdleTuningGcOnIdle

(default setting in container)

Benchmark: https://github.com/blueperf/acmeair
More details: https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

anthesisgroup.com: “Some 30 percent of VMs are zombies”
https://anthesisgroup.com/wp-content/uploads/2017/03/Comatsoe-Servers-Redux-2017.pdf

1. Detect idle state

2. Trigger GC

3. Compact Java heap

4. Send OS reclamation hint

OpenJ9 frees resources when applications are idling

https://github.com/blueperf/acmeair
https://developer.ibm.com/javasdk/2017/09/25/still-paying-unused-memory-java-app-idle

6767

OpenJ9 JIT Server

68

JIT server

JIT

JVM

JITServer

JIT

JVM

JIT

JVM Orchestrator
load balancing, affinity,

scaling, reliability

JITServer

69

JITServer Performance

Throughput benefits grow in constrained environments

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

Th
ro

u
gh

p
u

t
(p

ag
es

/s
ec

)

Time (sec)

--cpus=1, -m=300m

JITServer OpenJ9

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600
Th

ro
u

gh
p

u
t

(p
ag

es
/s

ec
)

Time (sec)

--cpus=1, -m=256m

JITServer OpenJ9

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

Th
ro

u
gh

p
u

t
(p

ag
es

/s
ec

)

Time (sec)

--cpus=1, -m=200m

JITServer OpenJ9

Smaller memory limit

JIT server performance : Open Liberty Daytrader7 throughput

70

How to enable a JIT Server

Launch OpenJ9 in client mode so that the VM sends requests to the

JITServer using the following command:

“-XX:+IseJITServer”

Then run the following command to start a JITServer process that

listens for incoming compilation requests:

“jitserver”

7171

Future tech to the rescue?
Faster start-up for Java applications with CRIU snapshots

72

CRIU

Checkpoint/Restore in Userspace (CRIU) is a potential solution for

reducing start-up time in Java applications.

CRIU is a feature on the Linux operating system that enables a

snapshot (checkpoint) to be taken of a running application

The application instance can then be restarted from the point at which

the snapshot was taken.

73

CRIU

5-10 times improvement in start-up time, with the greater

benefits of CRIU coming from more complex, slower to

start, applications.

74

Challenges with CRIU

• Lack of encryption on CRIU snapshots

• No Address Space Layout Randomization (ASLR)

• Predictable random number generators

• Running as non-root user

• No API to specify when the snapshot should be taken

7777

Recap
What if anything have you learned today?

78

How do you get the most out of

your JVM?

Write efficient code
Use the right JVM for your needs

Pick a runtime that is right for your application
Use Profiling

&
Tweaking your JVM

=
Less Money & Energy!

79

Links and Materials
JVM’s
• AdoptOpenJDK: https://adoptopenjdk.net/
• OpenJ9: https://www.eclipse.org/openj9/
• HotSpot JDK: https://openjdk.java.net/groups/hotspot/
• Oracle JDK: https://www.oracle.com/uk/java/technologies/javase-

downloads.html
• GraalVM: https://www.graalvm.org/
• Azul (Zulu): https://www.azul.com/downloads/zulu-community/
• Amazon JDK: https://aws.amazon.com/corretto/
Runtimes
• Open Liberty Site: https://openliberty.io/
• Open Liberty Guides: https://openliberty.io/guides
• Quarkus Site: https://quarkus.io/
Other Useful Links
• Jakarta EE Homepage: https://jakarta.ee/
• OpenJ9 JIT Server Doc:

https://www.eclipse.org/openj9/docs/jitserver/
• OpenJ9 Class Data Sharing Doc:

https://www.eclipse.org/openj9/docs/shrc/
• OpenJ9 Idle Tuning Doc:

https://www.eclipse.org/openj9/docs/xxidletuninggconidle/

https://www.eclipse.org/openj9/docs/xxidletuninggconidle/

80

References to research for this talk

• https://snyk.io/blog/36-of-developers-switched-from-oracle-jdk-to-an-alternate-openjdk-
distribution-over-the-last-year/

• https://en.wikipedia.org/wiki/List_of_Java_virtual_machines

• https://www.guru99.com/java-virtual-machine-
jvm.html#:~:text=Java%20Virtual%20Machine%20(JVM)%20is,code%20for%20a%20pa
rticular%20system.

• https://dzone.com/articles/jvm-architecture-explained

• https://www.quora.com/Whats-the-attraction-of-the-JVM-platform

• https://stackify.com/java-performance-tuning/

• https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines

• https://www.baeldung.com/java-profilers

https://snyk.io/blog/36-of-developers-switched-from-oracle-jdk-to-an-alternate-openjdk-distribution-over-the-last-year/
https://en.wikipedia.org/wiki/List_of_Java_virtual_machines
https://www.guru99.com/java-virtual-machine-jvm.html:~:text=Java%20Virtual%20Machine%20(JVM)%20is,code%20for%20a%20particular%20system
https://dzone.com/articles/jvm-architecture-explained
https://www.quora.com/Whats-the-attraction-of-the-JVM-platform
https://stackify.com/java-performance-tuning/
https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines
https://www.baeldung.com/java-profilers

8181

Thank You

Jamie Lee Coleman
Software Developer/Advocate @ IBM

jlcoleman@uk.ibm.com
@Jamie_Lee_C

mailto:jlcoleman@uk.ibm.com

