
Ivan Turčinović
ivan.turcinovic@inovatrend.com

Streaming with ksqlDB

2

Kafka ecosystem

Kafka broker

Zookeeper

Kafka broker Kafka broker

Zookeeper Zookeeper

Kafka Connect

Connector Connector

Schema Registry

ksqlDB server

ksqlDB server

Apps / Microservices Streaming apps

REST Proxy

ksqlDB

3

ksqlDB

https://images.ctfassets.net/8vofjvai1hpv/5KfaCoL62wOmqFFDgnvkK6/0167db54b960de083cc8ef1a782e6010/20210121-DIA-DEV_ksqlDB.svg

4

ksqlDB streams stack

https://docs.ksqldb.io/en/latest/img/ksqldb-kafka-streams-core-kafka-stack.png

5

Stream – Table duality

• An event stream records the history of what has happened as a

sequence of events

• A table represents the state at a particular point in time, typically
“now.”

• We can turn a stream into a table by aggregating the stream

• We can turn a table into a stream by capturing the changes made to
the table—inserts, updates, and deletes—into a “change stream.”

•https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/

•https://www.confluent.io/blog/streams-tables-two-sides-same-coin/

https://www.confluent.io/blog/kafka-streams-tables-part-1-event-streaming/
https://www.confluent.io/blog/streams-tables-two-sides-same-coin/

6

REST API/Clients

REST API - allows clients to interact with the ksqlDB server
Deployment:
• Interactive mode

• can submit new queries anytime by using the REST API.
• interactive experience, allows the ksqlDB server to create

and tear down streams, tables, queries, and connectors
dynamically

• Headless mode
• creating a file containing any persistent queries you want

the SQL engine to execute
• Static

ksqlDB Clients
• ksqlDB CLI
• ksqlDB UI – available only on Confluent platfom
• Java Client - official client
• .NET Client - unofficial client. contributed and maintained by

community members

7

Demo

8

Demo

Demo bank app

- transactions sender

- ksqlDB Java client

ksqlDB

- data enrichment – joins

- user average spending –

aggregations

- simple fraud detection –

windowed aggregations

user details

user transactions

9

Materialized views

• Same as relational DB views:
• derived from a query against another

collection.
• can be queried (called pull queries in ksqlDB).

• Different from relational DB views:
• for now could only be computed from

aggregate queries.
• refreshed automatically as new data comes in

• Materialized view is a TABLE in ksqlDB

1
0

Connector management

• ksqlDB gives you ability to configure and manage Kafka
Connect Connectors

• ksqlDB can run connectors in two different modes:
embedded or external.

CREATE SOURCE CONNECTOR jdbc_bank_client WITH (

"connector.class"='io.confluent.connect.jdbc.JdbcSourceConnector',

"connection.url"='jdbc:postgresql://localhost:5433/bank',

"connection.user"= 'bank',

"connection.password"= 'bank',

"mode"='incrementing',

"incrementing.column.name"='id',

"topic.prefix"='jdbc_',

"table.whitelist"='bank_client',

"key"='id',

"key.converter" = 'org.apache.kafka.connect.converters.LongConverter'

);

1
1

Stream processing – Create collections

CREATE STREAM bank_transactions_stream

WITH (

KAFKA_TOPIC='bank_transactions',

VALUE_FORMAT='AVRO'

);

CREATE TABLE bank_clients_table (

USER_ID BIGINT PRIMARY KEY,

FIRST_NAME STRING,

LAST_NAME STRING,

ADDRESS STRING

) WITH (

KAFKA_TOPIC = 'jdbc_bank_client',

VALUE_FORMAT = 'AVRO');

1
2

Stream processing – Queries

Pull queries:
• retrieve results at a point in time - “now” – at time of

query execution.

Push queries:
• stream a query result changes to the client

Persistent Queries:
• Query which write result back to Kafka.

SELECT * FROM bank_client_avg_spending WHERE userid = 32

SELECT * FROM bank_client_avg_spending WHERE userid = 32

emit changes;

CREATE STREAM kiehn_transactions AS

SELECT * FROM bank_transactions_enriched

WHERE lastname = 'Kiehn'

EMIT CHANGES;

1
3

Stream processing – joins

• Stateful operation
• INNER JOIN, LEFT JOIN, FULL JOIN

CREATE STREAM bank_transactions_enriched AS

SELECT

bank_transactions_stream.userid,

bank_transactions_stream.amount,

bank_transactions_stream.accountnumber,

bank_transactions_stream.merchantname,

bank_transactions_stream.timestamp,

bank_clients_table.first_name AS firstname,

bank_clients_table.last_name AS lastname,

bank_clients_table.address AS address

FROM bank_transactions_stream

INNER JOIN bank_clients_table

ON bank_transactions_stream.userid = bank_clients_table.u

ser_id

EMIT CHANGES;

1
4

Stream processing – aggregations

CREATE TABLE bank_client_avg_spending AS

SELECT

USERID,

AVG(AMOUNT) AS avg

FROM bank_transactions_enriched

GROUP BY userid

EMIT CHANGES;

Two steps for aggregating data:
• Create a SELECT statement that has some aggregate
function.
• Group related records using the GROUP BY clause.

1
5

Stream processing – windowed aggregations

Window types:
• Tumbling, Hopping, Session

CREATE TABLE bank_client_possible_fraud

WITH (KAFKA_TOPIC= 'bank_client_possible_fraud')

AS

SELECT userid,

count(*) AS n_attempts,

SUM(amount) AS total_amount,

collect_list(merchantname) AS merchants,

windowstart AS start_boundary,

windowend AS end_boundary

FROM bank_transactions_enriched

WINDOW TUMBLING(size 30 seconds, retention 10 days)

GROUP BY userid

HAVING count(*) >= 3

EMIT CHANGES;

1
6

UDF

• ksqlDB has a lot of built-in functions
• AVG, CEIL, CONCAT, COUNT, EARLIEST_BY_OFFSET …

• To list the available functions, we can use the
SHOW FUNCTIONS statement

User Defined Functions:
• Java interface that enables you to write your own functions
• User-defined functions, or UDFs

• Scalar functions
• Tabular functions – UDTFs
• Aggregation functions - UDAFs

1
7

Thank You!

